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There is nothing as practical as a good theory. (Richard Skemp, 1989, p. 27.) 
In this paper we consider the formulation of theory to fit a specific teaching problem. 
We advocate that a good theory should be practical in the sense that it has 
application in the classroom to produce long-lasting improvements in ways that make 
sense to teachers and students. It would also help to simplify the situation by bringing 
together with essential common elements from other theories rather than aggregating 
different aspects from distinct theories. Our theoretical perspective therefore listens 
to the voices being expressed in the classroom, both the teachers and the students, 
and places these in the wider context of theories of learning mathematics in today’s 
society. 

INTRODUCTION 
This paper is a contribution to a discussion on “Different theoretical perspectives in 
research: From Teaching problems to Research Problems”. We begin by focusing on 
a specific teaching problem, consider what theories are available to give insight and 
use this experience to gain empirical data and develop new theory to solve the 
particular problem and then to give a broader picture that may be applicable in a 
much wider arena. 
The problem here is the teaching of vectors (although the theory developed applies in 
a much wider range of contexts). Various solutions have been tried over the years, 
not only within the specific area of vectors, but also in the approach to mathematics 
teaching in general. Britain has a pragmatic culture; it identifies the problems and 
designs techniques to solve them. It is the land of the Industrial Revolution, the land 
of practical inventors with still more patents than any other country in the world. Its 
pragmatic solution to teaching vectors is to allow them to be studied practically 
where they arise in physics as forces, journeys, velocities, accelerations, and only 
later to study the mathematics of vectors in pure mathematics. 
The teaching of vectors has not gone well. It has followed the path of many other 
topics that students find difficult. The presentation has been made more and more 
practical and less and less dependent on mathematical theory. In this sense it is 
similar to other ‘difficult’ parts of mathematics, including fractions and algebra. 
Being a pragmatic nation, in Britain, the teachers are professionals. This means that 
they take their work seriously, work hard with long hours, with relatively little time 



  
in the schedule for analysis and reflection. Our experience (Poynter & Tall, 2005a) of 
interviewing colleagues show that they are aware that students have difficulties, but 
their awareness relates more to an episodic memory of what didn’t work last year 
rather than a theory that attempts to explain why it went wrong and what strategies 
might be appropriate to make it go right. Where there are problems, they may 
develop new strategies the following year in an attempt to improve matters. 
As an example we take the case of adding two vectors geometrically. The students 
are told that a vector depends only on its magnitude and direction and not on the 
point at which the vector starts. Therefore vectors can be shifted around to start at any 
point and so, to add two vectors, it is simply a matter of moving the second to start at 
the point where the first one ends, to give a combined journey along the two vectors, 
All that is necessary is to draw the arrow from the start point of the first vector to the 
end point of the second to give the third side of the triangle, which is the sum. 
The problem is that many students don’t seem to be able to cope with such 
instructions. Some ‘forget’ to draw the final side of the triangle to represent the result 
of the sum, others have difficulties when the vectors are in non-standard positions to 
start with, such as two vectors pointing into the same point, or two vectors that cross. 
Some students also find it difficult to cope with the case where two vectors start at 
the same point, and draw the ‘result’ of the two vectors AB  and AC  as the third side 
of the triangle, BC . 
Here we have a specific teaching problem that requires a solution. What theories are 
available to solve it? The science education theory of ‘alternative frameworks’ 
(Driver, 1981) suggests that that the students may have their own individual ways of 
conceptualising the concept of vector. However, it does not offer a theory of how to 
build a new uniform framework for free vector in a mathematical sense. 

SOME EXISTING THEORIES 
The embodied theory of Lakoff and his colleagues may offer a solution by 
encouraging us to consider how the students embody the concept of vector. The 
theory as presented by Lakoff and Núñez (2002) is not a theory of mathematics 
education; it even avoids mention in the main text of any mathematics education 
paper that is listed in its bibliography. Instead, it performs a theoretical analysis of 
sophisticated mathematics concepts (such as real numbers) from a high-level logico-
mathematical viewpoint. The pièce de résistance in the analysis of Lakoff and Núñez 
is their analysis of algebra, which, instead of analysing the shift from arithmetic to 
algebra cognitively, takes an example of an axiomatic system and looks within that 
for an embodied framework expressed in terms of cognitive science. Our view is that 
the theory of embodiment is a useful tool, but it is a tool that needs honing for the job 
of teaching children, rather than abstract analysis of formal mathematical concepts. 
The APOS theory of Dubinsky (Asiala et al, 1996) was another candidate for a 
framework for the research. Vectors represent, among other things, journeys, and 
journeys are actions that need routinizing and encapsulating as vector concepts. 



  
APOS theory claims that mathematical objects are constructed by reflective 
abstraction in the sequence A-P-O-S, beginning with Actions that are perceived as 
external, interiorised into internal Processes, encapsulated as mental Objects 
developing within a coherent mathematical Schema. The theory is claimed to be an 
overall theory of cognitive development, though in practice its initial applications 
related mainly to programming in the computer language ISETL using actions, 
processes and objects that are formulated mainly symbolically. In its early 
development, visualisation was avoided on the grounds that mathematical objects 
were formed starting with external actions that could be interiorized as processes that 
could be encapsulated as objects. The originator of APOS, Ed Dubinsky, is a highly 
articulate research mathematician who works by logical use of definitions and 
deductions; as any analyst will tell you, pictures have subtle meanings that invariably 
suggest ideas that often contain hidden assumptions. So how could we use APOS 
theory in an English classroom to make sense to the teachers and learners who seek a 
pragmatic understanding of what they are doing? 
We also looked at Skemp’s (1976) theory of instrumental and relational 
understanding. It seemed evident that many students were learning instrumentally 
how to add vectors without any relational understanding. But what was the relational 
understanding that was necessary, how do we formulate that? Likewise we looked at 
theories of procedural and conceptual knowledge (Hiebert & Lefevre, 1986, Hiebert 
& Carpenter, 1992), for surely the students were learning procedurally and not 
conceptually. But here again, what is the conceptual structure? 
It is apparent that the students begin learning with their own experiences. As they 
meet different examples of what is eventually desired to become a concept of free 
vector, they meet various practical examples, including vectors as journeys and 
vectors as forces. Many theories, such as that of Dienes (1960), suggests that the 
students must experience variance in the different examples and draw out of those 
examples the essential concepts that link them all and reject the incidental properties 
that are apparent in some instances but which do not generalise. However, in the case 
of vector, these incidental properties are coercive and lead to alternative frameworks 
that are difficult to shift. 
We considered other frameworks, for example a framework of intuition and rigour 
that occurs in Skemp’s (1971) intuitive and reflective thinking or in Fischbein’s 
(1987, 1993) tripartite system of intuitive, algorithmic and formal thinking. Our 
problem in the latter is that these three categories exist as quite separate aspects, as 
they did in the first design of the English National Curriculum where Concepts and 
Skills were put under separate headings, before being reunited again in later versions 
of the Curriculum. But perhaps in this case, APOS theory could help. The version of 
process-object encapsulation used by Gray and Tall (1994) shows how concepts in 
school mathematics build from actions such as counting to successively more 
compressed procedures such as count-all, count-on, count-on-from-larger, to known 
facts, and the manipulation of known facts as mental objects through deriving new 



  
facts from old. Perhaps process-object encapsulation is the clue that links concepts 
and skills, starting from embodiment and moving to symbolism. 
This certainly would fit in broad terms with SOLO taxonomy (Biggs & Collis, 1982) 
which has successive modes of operation (sensori-motor, ikonic, concrete-symbolic, 
formal and post formal) in cognitive development with links to the stage theory of 
Piaget (sensori-motor, pre-conceptual, concrete operational and formal) and the 
Bruner modes of enactive, iconic and symbolic. (There is not a direct match, because 
the categorisations are performed differently so, for instance, the change from 
Piaget’s concrete operational to formal occurs at an earlier point that the change from 
concrete-symbolic to formal in the SOLO theory.) Each SOLO mode is contained in 
the next, and each mode has its own ways of building concepts through a cycle of 
stages named as unistructural, multistructural, relational and extended abstract. By 
combining sensori-motor and ikonic as a single mode of conceptual embodiment, 
then a concrete-symbolic (proceptual) mode, followed by increasing sophistication of 
formalism, there are broad links between a range of theories. For instance, Pegg 
(2002) identified a fundamental cycle of concept construction that appears in a range 
of theories (figure 1). 
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Figure 1: The fundamental cycle of conceptual construction 

Given the underlying commonalities between the sequence of different modes of 
cognitive development and the fundamental cycle of concept construction in each of 
the different modes, we can begin to sense an underlying structure of human 
construction of mathematical concepts. However, any attempt to fit together these 
theories to form a corporate whole would seem to present insuperable difficulties. 
The theories may have broad commonalities but they also have subtle distinctions. It 
would be too much at this point in theory development to expect to have a cognitive 
theory that unifies all former theories. What would be more helpful is to seek a 
practical theory that resonates with fundamental aspects of these theories and yet also 
has the potential to make sense to teachers and students in the classroom. 



  
DEVELOPING A GENERAL THEORY TO FIT THE PROBLEM 
At this time our separate interests came into play and brought a surprising, and for us, 
insightful, observation that linked a single incident into the development of a whole 
theory of learning. The first-named author (Anna Poynter) was convinced that the 
problem arising from the complications of the examples of physics with their 
different meanings for journey, force, velocity, acceleration and so on, could be 
replaced a much simpler framework in mathematics, if only (and this is a big if) the 
students could focus on the important ideas. The problem was how to give a meaning 
to the notion of ‘free vector’ in a mathematical sense that could be applied to other 
contexts in an overall coherent way. 
The breakthrough came from a single comment of a student called Joshua. The 
students were performing a physical activity in which a triangle was being pushed 
around on a table to emulate the notion of ‘action’ on an object. Joshua explained that 
different actions can have the same ‘effect’. For example, he saw the combination of 
one translation followed by another as having the same effect as the single translation 
corresponding to the sum of the two vectors. He also observed that solving problems 
with velocities or accelerations is mathematically the same. 
This single example led to a major theoretical development. In performing an action 
on objects, initially the action focuses on what to do, but abstraction (to coin a phrase 
of John Mason, 1989) is performed by ‘a delicate shift of attention’, to the effect of 
that action. Instead of saying that two actions are equivalent in a mathematical sense, 
one can focus on the embodied idea of having the same effect. At a stroke, this deals 
with the difficult compression from action to process to object formulated in APOS 
theory, by focusing attention on shifting from action to effect in the embodied world.  
In the case of a translation of an object on a table, what matters is not the path taken, 
but the change from the initial position to the final position. The change can be seen 
by focusing on any point on the object and seeing where it starts and where it ends. 
All such movements can be represented by an arrow from start point to end point and 
all arrows have the same magnitude and direction. In this way any arrow with given 
magnitude and direction can represent the translation, and the addition of two vectors 
can be performed by placing two such arrows nose to tail and replacing them by the 
equivalent arrow from the starting point of the first arrow to the end of the second. 
This theory of compressing action via process to mental object. by concentrating on 
the embodied effect of an action on base objects is widely applicable. It is a practical 
idea that proves of value in the classroom, as well as bringing together a range of 
established theories developed over the last half century by Piaget, Bruner, Dienes, 
Biggs & Collis, Fischbein, Skemp, Dubinsky, Lakoff & Núñez and many others. 
Our next step is to test the theory empirically in the classroom. As this paper is 
directed at theory construction, we give a only brief outline of significant results 
found in Poynter (2004). 



  
EMPIRICAL RESULTS 
Poynter (2004) compared the progress of two classes in the same school, Group A 
taught by the researcher using an embodied approach focusing on the effect of a 
translation, Group B taught in parallel using the standard text-book approach by a 
comparable teacher. The changes were monitored by a pre-test, post-test and delayed 
post-test, and a spectrum of students were selected for individual interviews. The 
tests investigated the students’ progress in developing through a fundamental cycle of 
concept construction in both graphic and symbolic modes: 

Stage Graphical Symbolic 
0 No response No response 
1 Journey in one dimension A signed number 
2 Arrow as a journey from A to B Horizontal and vertical components 
3 Shifts with same magnitude and direction Column vector as relative shift 
4 Free vector Vector u as a manipulable symbol 

Figure 2: Fundamental cycle of concept construction of free vector  

Poynter (2004) focused on several aspects of the desired change that could be tested. 
Here we consider three of them. Poynter hypothesised that students, who encapsulate 
the process of translation as a free vector, will focus on the effect of the action rather 
than the action itself. This should enable them to add together free vectors 
geometrically even if the vectors are in ‘singular’ (non-generic) positions, such as 
vectors that meet in a point or which cross over each other. It should enable them to 
use the concept of vector in other contexts, e.g. as journey or force. In the case of a 
journey, it should allow the student to recognise that the sum of free vectors is 
commutative. (As a journey, the equation ABBCBCAB +=+  does not make sense, 
because BCAB +  traces from A to B to C but, ABBC + first represents a journey from 
B to C and requires a jump from C to B before continuing. As free vectors, u = 
AB and v = BC , we have u + v = v + u .) 
It was hypothesised that experimental students would be more able to: 

1. add vectors in singular (non-generic) cases 
2. use the concept of vector in other contexts (eg as journey or as force) 
3. use the commutative property for addition. 

Students were asked to add two vectors in three different examples: 

   

2) In each case add the two 
vectors together 

3) If there is any other way 
you could have done any of 
the additions of the two 
vectors in Q2 show it. 

(a) (b) (c)  
Figure 3: questions that could be considered singular 



  
When we asked other teachers what they felt students would find difficult, we 
encountered differences between the responses of a colleague who taught physics and 
two others who taught mathematics. As mathematicians, we saw part (a) to be in a 
general position, because it only required the right-hand arrow to be pulled across to 
the end of the left-hand arrow to add as free vectors; (b) evoked the idea of a 
parallelogram of forces; (c) was considered singular because it was known to cause 
problems with some students embodying it as two fingers pressing together to give 
resultant zero. 
All teachers considered part (c) would cause difficulties. However, they differed 
markedly in their interpretations of parts (a) and (b). The physics teacher considered 
that the students would see the sum of vectors either as a combination of journeys, 
one after another, or as a sum of forces. For her, (a) was problematic because it does 
not fit either model, but (b) would invoke a simple application of the parallelogram 
law. As an alternative some students might measure and add the separate horizontal 
and vertical components. The two mathematics teachers considered that students 
would be more likely to solve the problems by moving the vectors ‘nose to tail’ with 
the alternative possibility of measuring and adding components. One of them 
considered that students might see part (a) as journeys and connect across the gap, 
and in part (b) might use the triangle law in preference to the parallelogram law. The 
other sensed that (b) could cause a problem because ‘they have to disrupt a diagram’ 
to shift the vectors nose to tail—an implicit acknowledgement of the singular 
difficulty of the problem—and part (c) would again involve shifting vectors nose to 
tail although she acknowledged that some students might do this but not draw the 
resultant (which intimated again that they see the sum as a combination of journeys 
rather than of free vectors). 
The performance on the three questions assigning an overall graphical level to each 
student is given in Table 1. 

Group A (Experimental) Group B (Control) Graphical 
stage Pre-test Post-test Delayed Pre-test Post-test Delayed 

4 0 1 12 2 0 7 
3 1 9 4 1 10 3 
2 4 6 1 1 3 2 
1 4 1 0 4 1 0 
0 8 0 0 9 3 5 

TOTAL 17 17 17 17 17 17 

Table 1: Graphical responses to the singular questions 

Using the t-test on the numbers of students in the stages reveals that there is a 
significant improvement in the experimental students from pre-test to delayed post-
test (p < 0.01) but not in the control students. 
Similar resultstesting the responses to questions in different contexts and questions 
involving the commutative law are shown in tables 2 and 3. 



  
Graphical stage Group A (Experimental) Group B (Control) 

 Pre-test Post-test Delayed Pre-test Post-test Delayed 
4 0 0 8 0 0 2 
3 0 9 3 2 3 5 
2 1 2 2 0 3 3 
1 1 5 4 0 2 3 
0 15 1 0 15 9 4 

TOTAL 17 17 17 17 17 17 

Table 2: Graphical responses to questions set in different contexts 

The change is again statistically significant from pre-test to delayed post-test 
(p<0.01) using a t-test. 

Graphical stage Group A (Experimental) Group B (Control) 
 Pre-test Post-test Delayed Pre-test Post-test Delayed 

TOTAL 0 7 12 4 6 5 

Table 3: Responses using the commutative law of addition 

In this case the change is from a significant difference in favour of Group B on the 
pre-test (p<0.05 using a χ2-test) to a significant difference in favour of Group A 
(p<0.05 using a χ2-test). Further details may be found on the web (Poynter, 2004). 
What is clearly important here is not the statistical significance, but the evident 
changes which can be seen not only to improve the situation for Group A from pre-
test to post-test, but more importantly to increase the level of success by the delayed 
post-test. There is a clear difference in the long-term effect of the experimental 
teaching programme. 

BROADER THEORETICAL ASPECTS 
The theory reveals a parallel between focusing on the effect of embodied actions and 
the compression of symbolism from procedure to process to object has the potential 
to be simple to describe and implement with teachers and students. All that is 
necessary is to have appropriate activities and to mentor the participants to focus on 
the effects of carefully designed actions. This applies in a variety of areas, not only in 
representing vectors dually as transformations and as free vectors, but also in other 
areas where symbols represent a process being encapsulated into a concept. For 
instance the process of counting is compressed to the concept of number by focusing 
on the effect of counting in terms of the last number spoken in the counting schema. 
Likewise, the process of sharing and the concept of fraction, in which, say, sharing 
something into 4 equal parts and taking 3 of them gives the same effect as sharing 
into 8 equal parts and taking 6. This corresponds symbolically to having equivalent 
fractions ( 3 4  or 6 8 ). Likewise different algebraic procedures having the same effect 
gives an alternative way of looking at the idea of equivalent algebraic expressions. 
Other processes in mathematics, such as the concept of function, also result from a 
focus on the effect of an input-output action, rather than on the particular sequence of 



  
actions to carry out the process, revealing the wide range of topics in mathematics 
that can benefit from this theoretical analysis. 
This research into a single classroom problem has therefore stimulated developments 
in the relationship between embodiment and (proceptual) symbolism as part of a 
wider general theory of the cognitive development of three worlds of mathematics 
(embodied, symbolic and formal), (Watson, Spyrou & Tall, 2003, Tall, 2004). This 
theory, in turn, also builds on earlier work that theorizes three distinct kinds of 
mathematical object: “One is an embodied object, as in geometry and graphs that 
begin with physical foundations and steadily develop more abstract mental pictures 
through the subtle hierarchical use of language. The second is the symbolic procept 
which acts seamlessly to switch from an often unconscious ‘process to carry out’ 
using an appropriate algorithm to a ‘mental concept to manipulate’. The third is an 
axiomatic concept in advanced mathematical thinking where verbal/symbolical 
axioms are used as a basis for a logically constructed theory,” (Gray & Tall, 2001). 
In this way, looking at how a particular teaching problem benefits from different 
theories can be fruitful, not only in addressing the teaching problem in a way that 
makes practical sense to pupils and teachers, but also in analysing and synthesising a 
range of theories to produce a practical theory. 
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